Unlocking the potential of SnS2: Transition metal catalyzed utilization of reversible conversion and alloying reactions
نویسندگان
چکیده
The alloying-dealloying reactions of SnS2 proceeds with the initial conversion reaction of SnS2 with lithium that produces Li2S. Unfortunately, due to the electrochemical inactivity of Li2S, the conversion reaction of SnS2 is irreversible, which significantly limit its potential applications in lithium-ion batteries. Herein, a systematic understanding of transition metal molybdenum (Mo) as a catalyst in SnS2 anode is presented. It is found that Mo catalyst is able to efficiently promote the reversible conversion of Sn to SnS2. This leads to the utilization of both conversion and alloying reactions in SnS2 that greatly increases lithium storage capability of SnS2. Mo catalyst is introduced in the form of MoS2 grown directly onto self-assembled vertical SnS2 nanosheets that anchors on three-dimensional graphene (3DG) creating a hierarchal nanostructured named as SnS2/MoS2/3DG. The catalytic effect results in a significantly enhanced electrochemical properties of SnS2/MoS2/3DG; a high initial Coulombic efficiency (81.5%) and high discharge capacities of 960.5 and 495.6 mA h g-1 at current densities of 50 and 1000 mA g-1, respectively. Post cycling investigations using ex situ TEM and XPS analysis verifies the successful conversion reaction of SnS2 mediated by Mo. The successful integration of catalyst on alloying type metal sulfide anode creates a new avenue towards high energy density lithium anodes.
منابع مشابه
Modeling of Reversible Chain Transfer Catalyzed Polymerization by Moment Equations Method
A moment equations method was performed to study the Reversible chain Transfer Catalyzed Polymerization (RTCP) of styrene in 80°C. To do this, a kinetic scheme containing conventional free radical polymerization reactions and equilibrium reactions of RTCP was assumed. After obtaining mass balance equations, three moment equations were defined for free and dormant radicals and dead chains. M...
متن کاملInvestigating the Energy Storage Mechanism of SnS2‐rGO Composite Anode for Advanced Na-Ion Batteries
Tin sulfide−reduced graphene oxide (SnS2rGO) composite material is investigated as an advanced anode material for Na-ion batteries. It can deliver a reversible capacity of 630 mAh g−1 with negligible capacity loss and exhibits superb rate performance. Here, the energy storage mechanism of this SnS2-rGO anode and the critical mechanistic role of rGO will be revealed in detail. A synergistic mech...
متن کاملInterplay of reversible chain transfer and comonomer incorporation reactions in coordination copolymerization of ethylene/1–hexene
Coordinative chain transfer polymerization (CCTP) has opened a new path for the development of novel products like olefin block copolymers and chain-end functional polyolefins. However, conflicting results are frequently reported on the catalyst performance including activity and comonomer selectivity under CCTP conditions. Here we have selected two catalysts including rac-ethylenebis(1-η5-inde...
متن کاملElucidating the Impact of Cobalt Doping on the Lithium Storage Mechanism in Conversion/Alloying‐Type Zinc Oxide Anodes
Despite great technological interest in nanostructured zinc oxide (ZnO) for a large variety of applications, such as lightemitting diodes, gas sensors, or dye-sensitized solar cells, their investigation as lithium-ion anode materials has been reported rather scarcely to date. In fact, although a theoretical specific capacity of about 988 mAhg@1 (if the reaction ZnO+ 3Li+3e$LiZn+Li2O is consider...
متن کاملAb initio Study of Simple Mg-Ene Reactions of Propenyl Magnesium Halides and Ethylene (Type-I Intermolecular Reaction)
The insertion of an olefinic C=C bond into a metal-carbon bond is of potential interest as a preparativeroute to new products and as results of C-C coupling reactions to organic compounds. The allyl compoundsof Mg, react with an olefin by inversion of the allyl group via a six center transition state. These precyclicreactions may be one of the most important classes of organic reactions. The re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017